2019九年级数学上册期中试卷(2)

2019九年级数学上册期中试卷(2) 时间:2019-03-12

  秋九年级数学调研试题

  一、选择题(每小题3分,共24分)

  1.要使代数式2-3x有意义,则x的( )

  A.最大值是23 B.最小值是23

  C.最大值是32 D.最小值是32

  2.若12+y=27,则y的值为( )

  A.8 B.15 C.3 D.2

  3.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和D、E、F.若ABBC=23,DE=4,则EF的长是( )

  A.83 B.203 C.6 D.10

  第3题图

  4.方程x-2=x(x-2)的解为( )

  A.x=0 B.x1=0,x2=2

  C.x=2 D.x1=1,x2=2

  5.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共同签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为( )

  A.12x(x+1)=45 B.12x(x-1)=45

  C.x(x+1)=45 D.x(x-1)=45

  6.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为5,则下列结论中正确的是( )

  A.m=5 B.m=45 C.m=35 D.m=10

  第6题图

  7.若方程x2+x-1=0的两实根为α、β,那么下列式子正确的是( )

  A.α+β=1 B.αβ=1 C.α2+β2=2 D.1α+1β=1

  8.如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为( )

  A.5米 B.6米 C.7米 D.8米

  二、填空题(每小题3分,共30分)

  9.方程x2-2x-2=0的解是 .

  10.如图,在Rt△ABC中,AB=12,AC=5,∠A=90°,D、E分别为AB、AC的中点,则DE= .

  第10题图

  11.如图,在平面直角坐标系中,△ABC的顶点A的坐标为(2,3),若以原点O为位似中心,画△ABC的位似图形△A′B′C′,使△ABC和△A′B′C′的相似比等于12,则点A′的坐标为 .

  第11题图

  12.若关于x的一元二次方程ax2+3x-1=0有两个不相等的实数根,则a的取值范围是 .

  13.已知x、y为实数,且y=x2-9-9-x2+4,则x-y= .

  14.如果|a|+a=0,则(a-1)2+a2=

  15.若关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab= .

  16.如图,在△ABC中,P为AB上一点,有下列四个条件:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB.其中能判定△APC和△ACB相似的条件是

  (填序号).

  第16题图

  17.一个QQ群里共有若干个好友,如果每个好友都分别给群里其他好友发送了一条消息,这样共有870条消息,则这个QQ群里有 个好友.

  18.如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=2,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC相似,则点M的坐标是 .

  三、解答题(共66分)

  19.(6分)计算:

  (1)(212-418+348)×52;

  (2)18-22-82+(5-1)0.

  20.(6分)解下列方程:

  (1)(x+3)(x-1)=4x-4;

  (2)2x2-20x+25=0.

  21.(6分)先化简,再求值:a2-2ab+b22a-2b÷1b-1a,其中a=5+1,b=5-1.

  22.(10分)已知一元二次方程mx2-2mx+m-2=0.

  (1)若方程有两实数根,求m的范围;

  (2)设方程两实根为x1,x2,且|x1-x2|=1,求m.

  23.(8分)某超市在销售中发现:“熊出没”童装平均每天可售出20套,每套盈利40元,为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套.要想平均每天在销售这种童装上盈利1200元,那么每套应降价多少?

  24.(8分)如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).

  25.(10分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,连接BF,交边AC于点G,连接CF.

  (1)求证:AEAC=EGCG;

  (2)如果CF2=FG•FB,求证:CG•CE=BC•DE.

  26.(12分)请你认真阅读下面的小探究系列,完成所提出的问题.

  (1)如图①,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;

  (2)如图②,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(填“=”或“≠”);(6分)

  (3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图③,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,DG=3,求EFEG的值.

  期中检测卷

  1.A 2.C 3.C 4.D 5.B 6.B 7.D 8.D

  9.x1=1+3,x2=1-3 10.6.5 11.(4,6)

  12.a>-94且a≠0 13.-1或-7

  14.1-2a 15.4 16.①②③ 17.30

  18.(1,2-1)或(-2,2) 解析:∵OB=BC,BE⊥OC,AC⊥AB,∠CBO=45°,∴∠CBE=∠OBE=22.5°,AC=AB=2,∴BC=2,OA=2-2.∵BE为OC的垂直平分线,∴CD=OD,∴∠OCD=∠COD,∴∠ACB=∠DOA=45°,∴OA=AD=2-2.(1)如图①,过M作MF⊥BC,MG⊥AB.∵△CBM∽△COD,CD=OD,∴BM=CM,∴BF=CF=1.∵BE平分∠CBO,∴MG=MF,∴BG=BF=1,∴OG=OB-BG=1,∴MGAD=BGAB,即MG2-2=12,∴MG=2-1,故点M的坐标为(1,2-1);

  (2)如图②,△BCM∽△CDO时,过M作MP⊥AB于点P,连接OM,由(1)得CD=OD.又∵△BCM∽△CDO,∴BC=CM.又∵BE垂直平分CO,∴BC=CM=MO=OB,∴四边形MOBC为菱形,∴CM∥AB,∴AC=PM=2,∠MOP=2∠MBO=45°,∴OP=MP=2,∴点M的坐标为(-2,2).

  综上所述,点M的坐标是(1,2-1)或(-2,2).

  19.解:(1)原式=806-10;(3分)

  (2)原式=2+1.(6分)

  20.解:(1)x1=x2=1;(3分)

  (2)x1=10+522,x2=10-522.(6分)

  21.解:原式=(a-b)22(a-b)×aba-b=ab2,(2分)∵a=5+1,b=5-1,∴原式=ab2=(5+1)(5-1)2=2.(6分)

  22.解:(1)依题意得Δ=(-2m)2-4m(m-2)≥0,m≠0,解得m>0;(4分)

  (2)由题意得x1+x2=2,x1•x2=m-2m,(6分)|x1-x2|=1,∴(x1-x2)2=1,∴(x1+x2)2-4x1x2=4-4m-8m=1,(9分)∴m=8.(10分)

  23.解:设每套应降价x元,则依题意得(40-x)(20+2x)=1200,(2分)整理,得x2-30x+200=0,(4分)解得x1=10,x2=20.(6分)因要尽量减少库存,故x应取20.(7分)

  答:每套应降价20元.(8分)

  24.解:根据题意得AB⊥BH,CD⊥BH,FG⊥BH.∴△ABE∽△CDE,∴CDAB=DEDE+BD①.(2分)同理,FGAB=HGHG+GD+BD②.(4分)又CD=FG=1.7米,由①、②可得DEDE+BD=HGHG+GD+BD,即33+BD=510+BD,解得BD=7.5.(6分)将BD=7.5代入①得AB=5.95≈6.0(米).(7分)

  答:路灯杆AB的高度约为6.0米.(8分)

  25.解:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴AEAC=DEBC,EFBC=EGCG.又∵DE=EF,∴DEBC=EFBC,∴AEAC=EGCG;(4分)

  (2)∵CF2=FG•FB,∴CFFG=FBCF.又∠BFC=∠CFG,∴△BCF∽△CGF,∴FGFC=CGBC,∠FCE=∠CBF.(6分)又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG.又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴EFEC=FGFC.(8分)又∵EF=DE,FGFC=CGBC,∴CGBC=DEEC,即CG•CE=BC•DE.(10分)

  26.(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF.又∵∠GAE=∠C=90°,EA=EC,∴△EAG≌△ECF(ASA),∴EG=EF;(4分)

  (2)解:=(6分)

  (3)解:过点E作EM⊥AB于点M,作EN⊥BC于点N,(7分)则∠MEN=90°,EM∥BC,EN∥AB,∴EMAD=BEBD=ENCD,∴EMEN=ADCD=34.(9分)∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,∴Rt△GME∽Rt△FNE,则EFEG=ENEM=43.(12分)


本文地址:http://www.xspic.com/xuexifangfa/jiunianjishuxue/2621615.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(xspiccom@163.com),我们会及时处理和回复,谢谢.
0

很好,很强大!

0%
0

太差劲了!

0%
X

分享到微信朋友圈

打开微信,使用“扫一扫”即可将网页分享至朋友圈。